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ABSTRACT

Background. Global change produces pervasive negative impacts on biodiversity
worldwide. Land use change and biological invasions are two of the major drivers of
global change that often coexist; however, the effects of their interaction on natural
habitats have been little investigated. In particular, we aimed to analyse whether the
invasion of an introduced grass (Bromus tectorum; cheatgrass) along roads verges and
the disturbance level in the natural surrounding habitat interact to influence the degree
of B. tectorum invasion in the latter habitats in north-western Patagonia.
Methods. Along six different roads, totalling approximately 370 km, we set two 50 m
x 2 m sampling plots every 5 km (73 plots in total). One plot was placed parallel to the
road (on the roadside) and the other one perpendicular to it, towards the interior of the
natural surrounding habitat. In each plot, we estimated the B. tectorum plant density in
1 m? subplots placed every 5 m. In the natural habitat, we registered the vegetation type
(grassy steppe, shrub-steppe, shrubland, and wet-meadow) and the disturbance level
(low, intermediate, and high). Disturbance level was visually categorized according to
different signs of habitat degradation by anthropogenic use.
Results. B. tectorum density showed an exponential decay from roadsides towards
the interior of natural habitats. The degree of B. tectorum invasion inside natural
Submitted 29 January 2018 habitats was positively related to B. tectorum density on roadsides only when the
Accepted 7 August 2018 disturbance level was low. Shrub-steppes, grassy steppes and shrublands showed similar
Published 31 August 2018 mean density of B. tectorum. Wet-meadows had the lowest densities of B. tectorum.
Intermediate and highly disturbed environments presented higher B. tectorum density
than those areas with low disturbance.
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INTRODUCTION

In the Anthropocene era in which we are now living, human activities impacting on
biodiversity are so widespread that they are collectively known as anthropogenic global
change (Vitousek et al., 1996; Sala et al., 2000). Global change produces pervasive negative
impacts on biodiversity from all Earth’s ecosystems as consequences of land use change,
biological invasions, climate change, overexploitation and alteration of bio-geo-chemical
cycles (Sala et al., 2000). The loss of ecosystem functions and services due to biodiversity
changes is producing economic impacts via the reduction of food sources, fuel, structural
materials, or by changing community composition and vulnerability to invasion (Chapin
III et al., 2000). According to Sala and colleagues (2000) and Vitousek and colleagues
(1996) two of the major global change drivers threatening biodiversity are currently land
use change (e.g., habitat transformation into roads or grazing by domestic animals) and
biological invasions (Vitousek et al., 1996; Dukes ¢ Mooney, 1999; Sala et al., 2000). Of
particular concern is the simultaneous action of separate processes that have a greater total
effect than the sum of individual effects alone i.e., synergy among global change drivers
(Dukes & Mooney, 1999; Brook, Sodhi ¢ Bradshaw, 2008) which is rarely studied (Didham
et al., 2005).

Among land use change drivers, roads are still dominating human movements, carrying
along them unwanted biological organisms and favouring their long distance dispersal
(Von der Lippe ¢» Kowarik, 2007; Strano et al., 2018). Roads are a major contributor for
the spread of introduced plant species (Forman e~ Alexander, 1998; Gelbard ¢ Belnap,
2003; Ibisch et al., 2016). Habitats adjacent to roads are often more homogeneous than
natural or semi-natural habitats, as they are subject to increased disturbance and decreased
competition compared to more distant natural habitats (Forman ¢ Alexander, 1998;
Spellerberg, 1998). As a consequence, road verges may sometimes harbor short lived, fast
growing species which allocate a large proportion of their photosynthesis products to seed
output (Frenkel, 1977), many of which are introduced species (Gelbard ¢ Belnap, 2003;
Trombulak & Frissell, 2000). The linear arrangement of roads, their maintenance works and
ordinary traffic, increase plant species dispersal along roadsides, particularly of introduced
species (Forman, 2003; Lembrechts et al., 2016; Dainese et al., 2017; Rew et al., 2018).

Once established in roadside habitats, non-native plant species may spread into
surrounding environments (Seipel et al., 2012). For instance, introduced species richness
is lower in interior habitats respect to roads in Glacier National Park (Tyser ¢~ Worley,
1992), in California (Frenkel, 1977), and in south-eastern Ohio (Christen ¢ Matlack, 2009)
in USA. Both global change drivers, roads and biological invasions, may in addition
combine with other land use change drivers within interior habitats pointing at complex
interactions as the mechanism producing ecosystem alterations. Among the ones favouring
the spread of introduced species within native communities, grazing by domestic animals,
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and other disturbances are included, as well as extreme weather conditions due to climate
change (Brandt & Rickard, 1994; Davis, Grime & Thompson, 2000; Bradley, 2009). Of them,
overgrazing often favours the invasion of Eurasian grasses possibly due to their longer
co-evolution with ungulate grazers turning these grasses more resistant to trampling and
grazing (Mack, 1986; Tyser ¢~ Worley, 1992). These potential interactions and synergies
among drivers may be highly important in determining the actual impact on biodiversity
but yet, they have been little studied (Didham et al., 2007).

Bromus tectorum L. (cheatgrass-downy brome) is a winter annual grass species of
Eurasian origin. It is considered invasive in 11 countries, being USA the one with most
records (ISSG 2017). In this country it is commonly found along roads and disturbed areas
(Hulbert, 1955; Gelbard ¢» Belnap, 2003). Roads act as corridors, particularly favouring
B. tectorum cover along paved roads (Gelbard ¢ Belnap, 2003). Seeds are released within the
first weeks after ripening at the end of spring. Long distance dispersal is driven by positive
interactions with grazers, which, together with its higher competition efficiency with
native perennial grasses favour the invasion process (Hulbert, 1955). Unusual phenotypical
plasticity and greater efficiency in water and/or nitrogen use probably enable B. tectorum
to be more suited to frequent disturbance than native species (Mack ¢ Pyke, 1983; Rice et
al., 1992; Lowe, Lauenroth & Burke, 2003). However, undisturbed sagebrush habitats for
example, are resistant to B. tectorum invasion (Lavin et al., 2013). Thus, the conservation
status of each environment may then determine the magnitude of the invasion (Rickard ¢
Vaughan, 1988; Bradford & Lauenroth, 2006).

B. tectorum has been recently described as an invasive species in Patagonia (Speziale,
Lambertucci & Ezcurra, 2014) and its distribution is increasing since the first record in
1937 (Biganzoli, Larsen ¢» Rolhauser, 2013). Particularly, in north-western Patagonia it is
widespread along roads (KS personal observation). Like the USA, north-western Patagonia
presents climatic conditions that favours its persistence, with cattle raising areas the most
invaded ones (Veblen et al., 1992; Bradford ¢ Lauenroth, 2006; Speziale, Lambertucci ¢
Ezcurra, 2014).

In this work we sampled B. tectorum along road verges and in their close surrounding
environments in north-western Patagonia (Argentina), part of the area where the species is
described as invader. The comparison of roadsides and natural habitats enabled us to test
the invasion degree in relation to the density of B. tectorum at road verges. Additionally, it
also allowed us to understand whether the impact of roads interacts with other land-use
changes to determine the invasion degree of surrounding environments. We aimed to
analyse whether the density of B. tectorum along road verges and the disturbance level in
the surrounding natural habitats favour the invasion. We hypothesized that the density of
B. tectorum on the roadsides together with the level of disturbance within the surrounding
landscape influence the density of B. tectorum in this latter habitat. We predict that areas
with higher density of B. tectorum on the roadsides will record the highest densities of
B. tectorum within surrounding environments when disturbance is high.
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Figure 1 Study area in northwestern Patagonia. Study was conducted along roads of Neuquén and Rio
Negro provinces in Argentina. Red dots show sampling plot location. Map data Google, SIO, NOAA, US
Navy, GEBCO, US Dept of State Geographer, Image Landsat/Copernicus.

Full-size B DOI: 10.7717/peer;j.5529/fig-1

MATERIALS & METHODS
Study area

We conducted our fieldwork on the extra-Andean zones in Argentina within the Patagonian
sub-region (Fig. 1). The area is subject to a pronounced environmental gradient (Barros
et al., 1983) with four distinct dominant physiognomic units: steppes, shrublands,
shrub-steppes and wet-meadows (Fig. 1; Paruelo ef al., 1998a). Steppes are dominated
by perennial grasses as Poa ligularis, Festuca pallescens, and Pappostipa speciosa. Shrublands
are dominated by shrubs as Mulinum spinosum, Schinus patagonica, and Anarthrophyllum
rigidum, among others. Shrub-steppes are composed of perennial grasses and include low
to medium height shrubs as M. spinosum, A. rigidum, Colliguaja intergerrima, and Adesmia
spp. Wet-meadows (mallines) are diverse edaphic communities in humid depressions
dominated by Juncus spp, Distichlis spp. and other humid-adapted species. In this region,
the southern Andes act as a barrier to the humid westerlies causing a greater amount of
precipitation in the Andean Cordillera compared with a few 150 km to the east (Barros
et al., 1983; Paruelo et al., 1998b). Precipitation mainly occurs in autumn, and winter
ranging from about 800 mm/year in the west to 300 mm/year to the east of our study area.
To the west, the area includes shrublands within Nahuel Huapi National Parks reserve,
where lands are privately owned. Within the region tourism, forestry and cattle and sheep
rearing are the main economic activities. Among the important disturbances in the area
are anthropogenic fires and grazing by introduced animals (Veblen et al., 1992).
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Sampling design

We travelled the area along six different roads around 130 km on paved roads and 240 km
on unpaved roads. In each road, we set sampling plots every 5 km, with a total of 73 plots
(Fig. 1). Each plot consisted of two sub-plots of 50 m long and 2 m wide. One sub-plot
was placed parallel to the road and the other perpendicular to the centre of the first one,
towards the interior of the field; starting by the fencing when present. If not, the sub-plot
perpendicular to the road started when a vegetation change was observed from vegetation
disturbed by road or road maintenance to more pristine vegetation. In each plot, we located
a 1 m? frame subdivided into a 100-celled -grid every 5 m and we estimated density in
categories by counting the number of B. tectorum plants: 0, no individuals; 1, from one
to 15 individuals; 2, from 16 to 25 individuals; 3, from 26 to 50 individuals; 4, from 51
to 75 individuals; 5, more than 75 individuals. For statistical analysis (see below), this
density level was expressed as the approximate density using the maximum number of
individuals plants listed above per m? (hereafter B. tectorum density). When the species
was not present up to the first 50 m to the interior of the habitat we considered it absent
without sampling any further. But when B. tectorum was still present, we kept walking 50
m more to register the maximum distance where B. tectorum could be found and assigned
a category of density. When we still found B. tectorum beyond those 100 m we recorded its
presence as “more than 100 m”. This resulted in distances sampled that ranged from 0 to
100 m away from roads. Additionally, we registered the vegetation type, and disturbance
level. For vegetation type we used four categories: grassy steppe, shrub-steppe, shrubland,
and wet-meadow. Disturbance level was visually categorized in low (no clear sign of
disturbance), intermediate (low percentage of bare soil, few signs of herbivore damage
to soil and vegetation and few herbivore feces), and high (high percentage of bare soil,
signs of soil disturbance due to grazing or human activities, presence of species common
in degraded areas, top soil removed, and herbivore feces). All sampling sites were areas
used for extensive livestock production with a number of samples for each habitat type
of: n =26 for grassy steppes; n =38 for shrub-steppes; n =8 for shrublands; and n =2
for wet-meadows. Elevation ranged from 705 to 1,240 m asl (Sup Mat). Field work was
approved by the National Park Administration (project number: 1526).

Analyses

To assess the effects of road verges on the density of B. tectorum in surrounding
environments, we fitted a generalized mixed effects model with Poisson distribution
(Supplemental Information 1). Our response variable was the density of B. tectorum per
1 m? plot in the surrounding environments and the explanatory variable the density of B.
tectorum in road verges. We included co-variables to assess the influence of other potential
variables affecting the results. For this we included the distance (in meters) from the road
verge, the level of disturbance and vegetation type of the environment. The quantitative
co-variables were centred and standardized to make their coefficients comparable and to
ease computational estimations. Following our hierarchical sampling design, we used Road
and Sampling Transect as nested random effects. We considered intermediate disturbance
levels and shrubland vegetation as reference group and included an interaction term
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Table 1 Model’s fixed effects coefficients. Expected values in log scale, standard errors (SE), degrees of
freedom (DF), t-values, 95% confidence intervals (95% CI), and p-values for the model’s fixed effects. B,
is the model’s intercept, which includes intermediate disturbance level and shrubland vegetation as ref-
erence group. B and B, are the regression coefficients for high and low levels of field disturbance respec-
tively. B; represents the effect of B. tectorum density (plants*m?) at road verges on field density. B,, 85 and
Bs show the effects of grassland, wetland and shrubland vegetation on B. tectorum density in the field, re-
spectively. B; represents the effect of distance from verges (in meters) on the density of B. tectorum in the
field. Bs and By are the interaction terms between B. tectorum density on road verges and the level of dis-
turbance of the field.

95% CI

Parameters (log scale) Estimated  SE DF t-value  Lower  Upper  p-value
Bo: Intercept 2.13 0.19 859 11.39 1.76 2.49 0.001"
B1: High disturbance level 0.31 029 859 1.07 —0.27 0.90 0.288
B,: Low disturbance level —1.15 0.43 859 —2.66 —2.01 —0.29 0.010
Bs: Bt density in verge 1.01 0.14 859 7.46 0.74 1.28 0.001"
B4: Grassland —0.21 0.28 859 —0.75 —0.76 0.34 0.454
Bs: Wetland —0.95 0.10 859 —2.28 —2.07 —1.57 0.002"
Bs: Shrubland —0.25 0.46 859 —0.54 —1.16 0.66 0.591
B7: Distance from verge —0.10 0.03 859 —3.31 -0.17 —0.04 0.001"
Bs: Bt verges * High disturb ~ 0.04 0.03 859 1.29 —0.02 0.10 0.201
Bo: Bt verges * Low disturb 1.59 0.11 859 14.02 1.37 1.81 0.001"

Nmeg‘tatistically significant p-values are marked with *, and Bt is an abbreviation for B. tectorum.

between level of disturbance and the average density of B. tectorum in the road verges.
All analyses were performed in R (R Core Team, 2016). Due to the spatial nature of our
data, we checked spatial autocorrelation by constructing a correlogram, using the function
spline.correlog( ) from ncf package (Bjornstad, 2009). After fitting the model that included
the spatial correlation term, we checked for spatial autocorrelation in the normalized
model’s residuals using the acf( ) function. The final model, selected by the lowest AIC,
was a linear model with an interaction term between the density of B. tectorum in road
verges and the level of disturbance on the surrounding environment. Models fitting was
performed using the gamm( ) function from mgcv package (Wood, 2011).

RESULTS

We found that the density of B. tectorum in road verges interacted with the disturbance in the
surrounding environment to determine its density in these latter habitats (Table 1). When
the contiguous environment was more conserved (i.e., lower levels of disturbance), the
influence of road verges on the density of B. tectorum inside the surrounding environment
was high. Instead, when this environment was moderate or highly disturbed the density of
B. tectorum in these areas did not depend on road verges densities. This result shows that
in environments with low disturbance levels, the density of B. tectorum increases as their
density in road verges increases.

We also found that B. tectorum density decreases when we moved away from road verges
towards the interior of surrounding environment (Table 1). This negative effect of distance
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from road verges on B. tectorum density showed an exponential decay of density when
distance increases, at a rate of 0.9 plants per meter (Fig. 2).

Results from the model fit confirmed the observations and raw data that shrub-steppes,
grassy steppes and shrublands showed similar B. tectorum densities and higher than
wet-meadows (Table 1; Fig. 3A). For instance, the estimated density of B. tectorum for
shrub-steppes was 8.41 plants/m?, 6.82 plants/m? for grassy-steppes, 6.55 plants/m? for
shrublands and 3.25 plants/m? for wetlands. Results also show that intermediate and highly
disturbed environments present higher densities of B. tectorum than those areas with low
disturbance (Table 1; Fig. 3B).
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DISCUSSION

Our results highlight the importance of road verges on B. tectorum invasion into the
surrounding native communities. This importance is higher in cases were natural habitats
are better conserved and decreases when those habitats are more deteriorated. Previous
studies also show that invasive species progressively spread from initial introduction
areas as roadsides (Tyser & Worley, 1992; Gelbard ¢ Belnap, 2003). Roads may be acting
in Patagonia as conduits for the spread of B. tectorum seeds as in the USA (Gelbard ¢
Belnap, 2003), where road maintenance and vehicles contribute to human aided dispersal
of invasive species seeds at short and intermediate distances (Rauschert, Mortensen ¢
Bloser, 2017; Rew et al., 2018). However, their importance depends on disturbance level.
We found that density of B. tectorum in road verges is more important in determining
B. tectorum invasion in the surrounding habitats at low levels of disturbance. However,
when disturbance is high, the B. tectorum density may be explained by self-maintaining
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B. tectorum populations where propagule source is not the road verge but the populations
themselves. However, our data are robust, showing that effects of roads and disturbance
are not independent nor additive. Instead, the combined effects among these global change
drivers affect B. tectorum invasion in north-western Patagonia.

We found a similar B. tectorum density in steppes, shrub-steppes and shrublands in the
native environments adjacent to the roads which highlights its adaptability and capacity
to invade multiple ecosystems in Patagonia. B. tectorum germination, seedling and root
development is very fast in USA (Hulbert, 1955) what probably favours its presence
in a constantly human-modified area as roads verges and its success in invading close
surrounding ecosystems. Our result contrasts a previous study carried out in the same
region that showed that steppes were the most invaded habitat types (Speziale, Lambertucci
¢ Ezcurra, 2014). This could represent a change in the invasion pattern with time. However,
this previous study was conducted in areas as little disturbed as possible (further away from
roads), avoiding wet-meadows, and did not separate steppes from shrub-steppes. The
special case of wet-meadows probably represents a niche outside B. fectorum ecological
needs given that these edaphic community soils are normally wetter than this species
requirements and with high vegetation cover (Utrilla, Brizuela ¢ Cibils, 2005), being
probably environments where B. tectorum cannot outcompete native vegetation.

The decline we found in the density of B. tectorum with distance from roads for all
habitat types evidences the importance of roads during the first stages of the invasion.
At the same time, it points at a greater competitive ability of native species, differences
in disturbance at lower scale than we measured or in native species composition, and/or
at a lack of B. tectorum propagules which have probably not reached the interior yet.
Competitive ability and seed dispersal at medium distance often account for invasion
success (Brandt ¢ Rickard, 1994). Well conserved local communities might be dominated
by competitive species that are able to outcompete B. tectorum in areas with low levels of
disturbance (Davis, Grime ¢» Thompson, 2000; Fridley et al., 2007). However, we found B.
tectorum close to the road in all the habitats, with diverse disturbance level, and a decline in
density as we move away from them. Despite we selected homogenous habitats it is possible
that there were differences within plots in disturbance or community’s composition that we
did not measure. Additionally, dispersal ability could explain the decreased density further
away from roads. B. tectorum can disperse only one or two metres without the aid of a
vector. Its short dispersal ability could be compensated if the presence of cattle would have
aid the dispersal of propagules given their adaptations to epizoochory (Hulbert, 1955; Mack,
1981). Accurate measures of dispersal distance through wind and cattle vectors are not
available. This remains to be tested as no study has analysed B. tectorum dispersal and/or
competitive ability with native species, nor herbivory and seed predation in Patagonia.
Alternative, B. tectorum may be just ending a latency period given its relatively short time
since its first introduction in Patagonia (Biganzoli, Larsen ¢ Rolhauser, 2013; Speziale,
Lambertucci ¢ Ezcurra, 2014) what could explain its progressive increase in density within
the native surroundings.
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CONCLUSIONS

Synergies among global change drivers can impact native environments favouring the
invasion of B. tectorum. Habitat type is not the only important factor in resisting a

B. tectorum invasion. Within habitats susceptible to invasion (all but wet-meadows) road
verges influenced the density of B. tectorum in the surrounding habitat but their importance
changed with the habitat disturbance level. This synergy among global drivers needs to be
taken into account to develop accurate management tools (Didham et al., 2005). According
to this synergy, minimizing road construction and improving existing roads, as well as
designing road verge vegetation programs to quickly detect and prevent invasions, are
important recommendations for the sustainable management of ecosystems (7yser ¢
Worley, 1992; Gelbard ¢ Belnap, 2003). Also, from our results stem new recommendations.
Given the low invasion of habitats with low sign of degradation, the common sense
recommendation would be to keep this good habitat conservation. However, it is important
to design and implement both strategies at a time: B. tectorum controls in road verges and
avoiding high disturbances within the ecosystems. Additionally, when habitat disturbance
level is already high, restoration of the ecosystem would be needed in addition to road verge
management. This is important both for reducing potential B. tectorum invasion impacts
but also from a productive point of view which seeks good pastures for the domestic
animals.
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